Bayesian Inference with Backfitting MCMC

Previous posts in this series on MCMC samplers for Bayesian inference (in order of publication): Bayesian Simple Linear Regression with Gibbs Sampling in R Blocked Gibbs Sampling in R for Bayesian Multiple Linear Regression Metropolis-in-Gibbs Sampling and Runtime Analysis with Profviz Speeding up Metropolis-Hastings with Rcpp All code for this (and previous) posts are in … Continue reading Bayesian Inference with Backfitting MCMC

Advertisements

Speeding up Metropolis-Hastings with Rcpp

Previous posts in this series on MCMC samplers for Bayesian inference (in order of publication): Bayesian Simple Linear Regression with Gibbs Sampling in R Blocked Gibbs Sampling in R for Bayesian Multiple Linear Regression Metropolis-in-Gibbs Sampling and Runtime Analysis with Profviz The code for all of these posts can be found in my BayesianTutorials GitHub … Continue reading Speeding up Metropolis-Hastings with Rcpp

Metropolis-in-Gibbs Sampling and Runtime Analysis with Profviz

First off, here are the previous posts in my Bayesian sampling series: Bayesian Simple Linear Regression with Gibbs Sampling in R Blocked Gibbs Sampling in R for Bayesian Multiple Linear Regression In the first post, I illustrated Gibbs Sampling - an algorithm for getting draws from a posterior when conditional posteriors are known. In the … Continue reading Metropolis-in-Gibbs Sampling and Runtime Analysis with Profviz

Blocked Gibbs Sampling in R for Bayesian Multiple Linear Regression

In a previous post, I derived and coded a Gibbs sampler in R for estimating a simple linear regression. In this post, I will do the same for multivariate linear regression. I will derive the conditional posterior distributions necessary for the blocked Gibbs sampler. I will then code the sampler and test it using simulated … Continue reading Blocked Gibbs Sampling in R for Bayesian Multiple Linear Regression

Bayesian Simple Linear Regression with Gibbs Sampling in R

Many introductions to Bayesian analysis use relatively simple didactic examples (e.g. making inference about the probability of success given bernoulli data). While this makes for a good introduction to Bayesian principles, the extension of these principles to regression is not straight-forward. This post will sketch out how these principles extend to simple linear regression. Along … Continue reading Bayesian Simple Linear Regression with Gibbs Sampling in R

Exploring P-values with Simulations in R

The recent flare-up in discussions on p-values inspired me to conduct a brief simulation study. In particularly, I wanted to illustrate just how p-values vary with different effect and sample sizes. Here are the details of the simulation. I simulated $latex n $ draws of my independent variable $latex X $: $latex X_n \sim N(100, 400)$ where $latex … Continue reading Exploring P-values with Simulations in R

Stop and Frisk: Spatial Analysis of Racial Differences

In my last post, I compiled and cleaned publicly available data on over 4.5 million stops over the past 11 years. I also presented preliminary summary statistics showing that blacks had been consistently stopped 3-6 times more than whites over the last decade in NYC. Since the last post, I managed to clean and reformat the … Continue reading Stop and Frisk: Spatial Analysis of Racial Differences